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Abstract

This paper contributes to the extensive literature on technological spillovers by
examining the major determinants of total-factor productivity (TFP) evolution.
Beginning with a model in which technological progress is reflected by product
variety, we decompose TFP into quality and variety components. We address the
quality component by introducing a country’s distance to the technological frontier.
Quality is assumed to be a negative function of the technological gap of country i
with respect to its own technological frontier. This technological frontier is defined
as the geometric means of knowledge levels in all countries. We deal with the
variety component by using R&D expenditure combined with human capital stocks.
We obtain a spatial Durbin structure in TFP growth that can be estimated using
spatial econometrics tools. Our TFP growth model is estimated from a sample
of 107 countries for the period 2000-2011. The main focus is on the role played
by technological spillovers. They impact productivity growth substantially, as do
traditional factors such as R&D and human capital stock. Technological spillovers
are captured by the spatial autocorrelation coefficient and the indirect impact of
R&D.

KEYWORDS: Diffusion; Productivity; R&D; Spatial Auto-correlation.

JEL: R12; E23; O32; C21.

∗Université de Bourgogne, Laboratoire d’Économie de Dijon UMR 6307 - CNRS, 2 boule-
vard Gabriel, BP 26611, 21066 DIJON CEDEX, Phone: +33 (0)3 8039 5430, E-mail:
aligui.tientao@u-bourgogne.fr corresponding author
†Université de Bourgogne, Laboratoire d’Économie de Dijon UMR 6307 - CNRS, 2 boulevard Gabriel,

BP 26611, 21066 DIJON CEDEX, Phone: +33 (0)3 8039 3520, E-mail: diego.legros@u-bourgogne.fr
‡Université de Bourgogne, Laboratoire d’Économie de Dijon UMR 6307 - CNRS, 2 boule-

vard Gabriel, BP 26611, 21066 DIJON CEDEX, Phone: +33 (0)3 8039 5434, E-mail:
marie-claude.pichery@u-bourgogne.fr

2



1 Introduction

Continued economic growth depends on our ability to maintain and increase current lev-
els of innovation. Governments implement a wide range of policies to promote innovation
including in R&D, intellectual property rights, education, labour markets, financial mar-
kets and product market regulations. Improving the business environment in order to
encourage innovation is an especially important policy area and open trade is conducive
to the free flow of technologies across borders, enhanced competitive pressure and the
opening up of new markets. International trade provides a way for global firms to exploit
innovations, and it is also a major source of innovation (Grossman and Helpman, 1991).

There is a mass of theoretical research showing that international openness impacts
growth and productivity positively in various ways (Aghion and Howitt, 2009 Chap. 15).
Trade can boost productivity because producers gain access to new imported varieties
of inputs. This can reduce the cost of innovation engendering more variety creation in
the future. The effect of increased product variety on productivity is thought to depend
upon the elasticity of substitution among different varieties of a good, and/or upon shifts
in the apportionment of expenditure among new, remaining, and disappearing goods.
Increasing the number of varieties does not appear to affect productivity much if new
varieties are close substitutes for existing varieties or if the proportion of new varieties is
small relative to existing ones (Broda et al., 2006).

Since the seminal paper of Coe and Helpman (1995), several empirical studies have
documented that R&D cross-country spillovers, through the channel of trade flows, have
been an important engine of TFP growth in the industrialized countries (Coe et al., 1997;
Bayoumi et al., 1999; Crespo et al., 2004; Coe et al., 2009). Coe and Helpman (1995)
test the prediction of the trade and growth models of Grossman and Helpman (1991) and
Rivera- Batiz and Romer (1991) in which foreign R&D creates new intermediate inputs
and perhaps spillovers that the home country can access through imports. Subsequent
studies reveal that productivity spillovers arising from international openness are largely
determined by the host country’s capability to absorb and innovate. True, a large tech-
nology gap between local and foreign firms may signal considerable “catch-up” potential;
however, it may also indicate the very poor absorptive capabilities of the local partners
(Blomström and Sjöholm, 1999). The availability of adequate human capital and basic
infrastructure facilities is crucial for the adoption and development of advanced tech-
nologies (Borensztein et al., 1998). Empirical studies have reported that trade enhances
competitive pressure. For instance, fierce competition arising from the entry of multina-
tional corporations (MNCs) is found to be detrimental to the economy because it crowds
out the least efficient domestic firms (Kokko, 1996).

Other channels of international technology diffusion have been examined. For exam-
ple, Keller and Yeaple (2009) examine R&D spillover by substituting bilateral measures
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of Foreign Direct Investment (FDI) for imports. Lee (2006) uses bilateral technologi-
cal proximity and patent citations between countries while Keller (2002) and Ertur and
Musolesi (2013) use geographic location.

While trade and FDI are known to be important for the performance of innovation
systems, not enough is known about how trade affects the innovation process. This paper
aims to contribute to the extensive literature on technological spillovers by analysing the
major determinants of TFP evolution. The main contribution of this paper to the existing
literature is twofold. First, we propose an alternative method for estimating technology
spillovers based on a model in which technological progress shows up as an expansion of
the number of varieties of products. To this end, we focus on the impact of international
openness in terms of foreign trade and geographical proximity on productivity. Second,
we decompose TFP into two components: quality and variety. We address the quality
component by determining a country’s distance from the technological frontier. A country
that is far from the technology frontier derives a certain advantage from this deficit,
because it can grow rapidly simply by adopting technologies that have already been
developed in more advanced countries. Technology transfer will stabilize the gap between
rich and poor countries, allowing the poor countries to grow as fast as the rich. We assume
that quality is a negative function of the technological gap of country i with respect to its
own technological frontier. This technological frontier is defined as the geometric means
of knowledge levels in all countries.

Technological knowledge is often tacit and circumstantially specific. It cannot simply
be copied and transplanted to another country. Instead, the receiving country must have a
certain capacity in order to master the technology and adapt it to local conditions. We use
R&D expenditure combined with human capital stocks to deal with the variety component
and obtain a spatial Durbin model that can be estimated using spatial econometrics tools.
This enables us to capture both the direct and indirect effects of R&D through trade and
geographical proximity on TFP growth.

It is worth noting that our first contribution uses a novel method for estimating
technology spillovers. This method allows us to account for the quality and variety
components of TFP simultaneously.

We use a sample of 107 countries over the period 2000-2011 to estimate our TFP
growth model. The role played by technological spillovers is the main focus of this
analysis. The main results from our estimations are that, in addition to traditional factors
such as R&D and human capital stock, technological spillovers have a strong impact
on productivity growth. These spillovers are captured by the spatial autocorrelation
coefficient and by the indirect impact of R&D and human capital.

The remainder of the paper has the following structure. In Section 2 we lay out the
theoretical model. Section 3 presents the estimation procedure. Section 4 is about data
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and estimation results and Section 5 concludes.

2 The theoretical model

We consider models in which technological progress shows up as an expansion of the
number of varieties of products (Romer 1987, 1990). We think of a change in this number
as a basic innovation, akin to opening up a new industry. Of course, the identification
of the state of technology with the number of varieties of products should be viewed as
a metaphor; it selects one aspect of technical advance and thereby provides a tractable
framework in which to study long-term growth.

Another metaphor has been developed in which progress shows up as quality improve-
ments for an array of existing kinds of products (Grossman and Helpman, 1991a; Aghion
and Howitt, 1992). These quality enhancements represent the more or less continuous
process of upgrading that occurs within an established industry. The two metaphors
should be viewed as complementary and not opposing approaches (Barro and Sala-i-
Martin, 2003).

2.1 Production relations

A common point of departure in the literature is to start from a stylized regional pro-
duction function to model the transmission channels of trade and FDI activity as well as
additional private and public inputs to economic growth. A spatially extended version
of the production function approach is presented in Ertur and Koch (2007), for instance.
We consider a single country in a world economy with n different countries. There is
a fixed number L of people, each of whom lives forever and has a constant flow of one
unit of labour that can be used in manufacturing. For simplicity we suppose that no
one has a demand for leisure time, so each person offers her one unit of labour for sale
inelastically (that is, no matter what the wage rate). Her utility in each period depends
only on consumption, according to the same isoelastic function (Aghion and Howitt, 2009
Chap. 3).

u(c) =
c1−ε

1− ε
, ε > 0

and she discounts utility using a constant rate of time preference %. This means that in
the steady state the growth rate g and the interest rate r must obey the Euler equation,
which can be written as:

g =
r − %
ε

There is one final good Yi(t), produced under perfect competition by labour Li(t) and
a continuum of intermediate products, indexed by v in the interval [0,Mi(t)]. Mi(t) is
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our measure of product variety. We follow Broda et al. (2006) by writing the production
function as

Yi(t) = (Ai(t)Li(t))
1−α

[∫ Mi(t)

0

xνi,v(t)dv

]α
ν

(1)

where Ai(t) is a productivity parameter, α ε [0, 1] is one minus the share of labour in
output and ν ε [0, 1] measures the elasticity of substitution between varieties of input
goods xi,ν(t), with a higher ν corresponding to more substitutable inputs.

All intermediates enter symmetrically into the production function, and all command
the same price. At equilibrium, each intermediate is demanded to the same extent xi(t) =

xi,ν(t) (Grossman and Helpman 1991). Using this fact, (1) can be simplified to

Yi(t) = (Ai(t)Li(t))
1−αMi(t)

α
ν xαi (t) (2)

Each intermediate product is produced using the final good as input, one for one. That
is, each unit of intermediate product v produced requires the input of one unit of final
good (Aghion and Howitt, 2009 Chap. 3). According to this one-for-one technology, the
aggregate capital stock is given by Ki(t) = Mi(t)xi(t). Using this fact, we can rewrite
(2) as

Yi(t) = Ai(t)
1−αLi(t)

1−αMi(t)
( 1−ν
ν

)αKi(t)
α (3)

From equation (3) we can specify the total factor productivity (tfp) as follows:1

Zi(t) =
Yi(t)

Li(t)1−αKi(t)α
(4)

Plugging (3) into (4) yields:

Zi(t) = Ai(t)
1−αMi(t)

( 1−ν
ν

)α (5)

Unlike in Coe and Helpman (1995, 2009) and Keller (1998), this measure of tfp has
two components: a product-variety component captured by the term in Mi(t)

( 1−ν
ν

)α and
a quality component embodied in the term in Ai(t)1−α.

2.2 Quality of knowledge and expanding variety

Equation (5) shows that tfp depends on quality of innovation and product-variety. In
order to capture the quality component, we draw on Ertur and Koch, 2011 by defining
Ai(t)

1−α as:

Ai(t)
1−α = ζ

n∏
j=1

(
Zj(t)

Zi(t)

)γwij
(6)

1See Coe and Helpman (1995, 2009) and Keller (1998).
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where γ ∈ [−1, 1] captures the degree of technology diffusion. We assume that quality is a
negative function of the technological gap of country i with respect to its own technological
frontier. This technological frontier is defined as the geometric mean of knowledge levels in
all countries denoted by Zj(t), for j = 1, 2, ..n. We can also define the technology frontier
as the world or global technological leader. But this approach requires a normalization of
the technology frontier to a reference country, so each computed technology frontier must
be interpreted relative to a particular country that has to be chosen in advance. Moreover,
the specification proposed in this paper encompasses the particular case of the world or
global technological leader. We assume that the interaction terms wij are non negative,
finite and non stochastic. The gap with respect to the technological frontier determines
the quality of productivity. Indeed, the closer a country is to its own technological frontier
the higher is its productivity quality.

Plugging (6) into (5) yields:

Zi(t) = ζ
n∏
j=1

(
Zj(t)

Zi(t)

)γwij
Mi(t)

( 1−ν
ν

)α (7)

For the product variety component, we follow Grossman and Helpman (1991) in as-
suming that in a world with international trade in goods and services, foreign direct
investment, and an international exchange of information and dissemination of knowl-
edge, a country’s productivity depends on its own R&D as well as on the R&D efforts of
its trading partners. In another world, a country’s level of productivity will be related to
the number of contacts that local agents have with their counterparts in the international
and business communities. Explicitly, we have:

Mi(t)
( 1−ν
ν

)α = Rθ
i (t)H

ψ
i (t)

n∏
j=1

(
Rθ
j(t)(t)H

ψ
j (t)

)γwij
(8)

where θ > 0 and ψ > 0 are the elasticities of R&D and human capital stock. We therefore
suppose that country i’s product variety depends on its own R&D expenditure Ri(t) and
on R&D of all countries, denoted by Rj(t), j = 1, 2, ..n. The term Hi captures country’s
i ability and absorption capacity which is measured by the human capital stock.

Plugging (8) into (7) yields:

Zi(t) = ζ

n∏
j=1

(
Zj(t)

Zi(t)

)γwij
Rθ
i (t)H

ψ
i (t)

n∏
j=1

(
Rθ
j(t)H

ψ
j (t)

)γwij
(9)

Taking (9) in logarithm form yields:

lnZi(t) = ln ζ−lnZi(t)+γ
n∑
j=1

wij lnZj(t)+θ lnRi(t)+ψ lnHi(t)+γθ
n∑
j=1

wij lnRj(t)+γψ
n∑
j=1

wij lnHj(t)

Arranging the terms, we obtain:
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lnZi(t) = ln ζ/2 + γ/)
n∑
j=1

wij lnZj(t) + θ/2 lnRi(t) + ψ/2 lnHi(t)+

γθ/2
n∑
j=1

wij lnRj(t) + γψ/2
n∑
j=1

wij lnHj(t)

(10)

Equation (10) can be rewritten as:

lnZi(t) = β0 + β1 lnRi(t) + β2 lnHi(t) + ρ
n∑
j=1

wij lnZj(t) + λ1

n∑
j=1

wij lnRj(t)

+
γψ

2

n∑
j=1

wij lnHj(t)

(11)

where β0 ≡ ln ζ
2
> 0 is the constant term; β1 ≡ θ

2
> 0 is the coefficient that captures the

impact of country i’s R&D; β2 ≡ ψ
2
> 0 is the coefficient associated with human capital;

ρ ≡ γ
2
> 0 is the spatial autocorrelation coefficient that captures knowledge diffusion

from neighbouring countries; λ1 ≡ γθ
2
> 0 measures the average impact of neighbouring

countries’ R&D and λ2 ≡ γψ
2
> 0 is the coefficient that captures the average impact of

neighbouring countries’ human capital.
In matrix form we obtain:

Z = Iβ0 + Rβ1 + Hβ2 + λ1WR + λ2WH + ρWZ (12)

where Z = lnZi(t), a matrix (n× 1) of tfp growth; I, a matrix (n× 1) of 1; R = lnRi(t)

a matrix (n × 1) of R&D; H = lnhi(t), a matrix (n × 1) of human capital stock; W =∑n
j=1wij is our interaction matrix (n× n). Equation (12) is a version of the well known

specification in the spatial econometric literature referred to as the Spatial Durbin model
(SDM). This kind of econometric specification includes spatial lags of all the exogenous
variables in addition to the spatial lag of the endogenous variable.

3 Estimation procedure

3.1 SDM model estimation

When the spatial autocorrelation is modelled, ordinary least squares regression (OLS)
is no longer appropriate: the estimates obtained by this method are not convergent if
there is a lagged endogenous variable and they are inefficient in the presence of spatial
autocorrelation. Other estimation methods are then necessary to find convergent and
efficient estimates. The method widely used is that of maximum likelihood (Lee, 2004;
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LeSage and Pace, 2009).2 Consider the following SDM model:

y = αιn +Xβ +WXθ + ρWy + ε (13)

y = (In − ρW )−1(αιn +Xβ +WXθ + ρWy + ε)

ε ∼ N(0, σ2In)

where 0 represents an n× 1 vector of zeros and ιn an n× 1 vector of ones associated with
the constant term parameter α. This model can be written as a SAR3 model by defining:
Z = [ιn X WX] and δ = [α β θ]

′ . This means that the likelihood function for SAR
and SDM models can be written in the same form. The log-likelihood function for the
SDM and SAR models takes the following form:

lnL = −(n/2) ln(2πσ2) + ln |In − ρW | −
e
′
e

2σ2

e = y − ρWy − Zδ

ρ ∈
(
min(ω)−1, max(ω)−1

)
where: Z = [ιn X] for the SAR model and Z = [ιn X WX] for the SDM model;
ω is the n × 1 vector of eigenvalues of the matrix W (LeSage and Pace, 2009). If ω
contains only real eigenvalues, a positive definite variance-covariance matrix is ensured
by the condition: ρ ∈ (min(ω)−1, max(ω)−1) (Ord, 1975).

Maximizing the log-likelihood for the SAR model would involve setting the first deriva-
tives with respect to the parameters β, σ2 and ρ equal to zero and simultaneously solving
these first-order conditions for all parameters. In contrast, the equivalent maximum likeli-
hood estimates could be found using the log-likelihood function concentrated with respect
to the parameters β and σ2. This involves substituting closed-form solutions from the
first order conditions for the parameters β and σ2 to yield a log-likelihood that is said to
be concentrated log-likelihood function with respect to these parameters.

y = Zδ + ρWy + ε (14)

From the model statement (14), if the true value of the parameter ρ was known to be say
ρ∗, we could rearrange the model statement in (14) as:

y − ρ∗Wy = Zδ + ε (15)

This suggests an estimate for δ of δ̂ = (Z ′Z)−1Z ′(In − ρW )y. In this case we could also
find an estimate for the noise variance parameter σ̂2 = n−1e(ρ∗)′e(ρ∗), where e(ρ∗) =

2For estimation we used James LESAGE’s Econometrics Toolbox which is available at
http://www.spatial-econometrics.com/.

3Spatial Auto-Regressive model: y = αιn +Xβ + ρWy + ε
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y − ρ∗Wy − Zδ̂. These ideas mean that we can concentrate the full (log) likelihood
with respect to the parameter β, σ2 and reduce the maximum likelihood to a univariate
optimization problem in the parameter ρ.

Working with the concentrated log-likelihood yields exactly the same maximum likeli-
hood estimates β̂, σ̂, and ρ̂ as would arise from maximizing the full log-likelihood (David-
son and Mackinnon, 1993).

As noted, the log-likelihood can be concentrated with respect to the coefficient vector
δ and the noise variance parameter σ2. Pace and Barry (1997) suggest a convenient
approach for concentrating out the parameters δ and σ2.

lnL(ρ) = κ+ ln |In − ρW | − (n/2) ln(S(ρ)) (16)

S(ρ) = e(ρ)
′
e(ρ) = e

′

0e0 − 2ρe
′

0ed + ρ2e
′

ded

e(ρ) = e0 − ρed

e0 = y − Zδ0

ed = Wy − Zδd

δ0 = (ZZ)−1Z
′
y

δd = (ZZ)−1Z
′
Wy

The term κ is a constant that does not depend on the parameter ρ, and |In − ρW | is
the determinant of the n × n matrix. We use the notation e(ρ) to indicate that this
vector depends on the values taken by the parameter ρ, as does the scalar concentrated
log-likelihood function value lnL(ρ).

To simplify optimization of the log-likelihood with respect to the parameter ρ, Pace
and Barry (1997) propose evaluating the log-likelihood using a q × 1 vector of values for
ρ in the interval [ρmin, ρmax], labelled ρ1, ρ2, ρ3, . . . , ρq.

lnL(ρ1)

lnL(ρ2)
...

lnL(ρq)

 = κ+


ln |In − ρ1W |
ln |In − ρ2W |

...
ln |In − ρqW |

− (n/2)


ln(S(ρ1))

ln(S(ρ2))
...

ln(S(ρq))

 (17)

Given a sufficiently fine grid of q values for the log-likelihood, interpolation can supply
intervening points to any desired precision (which follows from the smoothness of the log-
likelihood function). Note, the scalar moments e′0e0 , e

′
0ed, and e

′

ded, and the k×1 vectors
Zδ0, Zδd are computed prior to optimization and so, given a value for ρ, calculating S(ρ)

simply involves weighting three numbers. Given the optimum value of ρ, this becomes
the maximum likelihood estimate of ρ denoted as ρ̂. Therefore, it requires very little
computation to arrive at the vector of concentrated log-likelihood values.
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Given the maximum likelihood estimate ρ̂, the maximum likelihood estimates for the
coefficients δ̂, the noise variance parameter σ̂2, and associated variance-covariance matrix
for the disturbances are:

δ̂ = δ0 − ρ̂δd (18)

σ̂2 = n−1S(ρ̂) (19)

Ω̂ = σ̂2[(In − ρW )
′
(In − ρW )]−1 (20)

Maximum likelihood estimation could proceed using a variety of univariate optimization
techniques. These could include the vectorized approach just discussed based on a fine
grid of values of ρ (large q), non-derivative search methods such as the Nelder-Mead
simplex or bisection search scheme, or derivative-based optimization techniques (Press et
al., 1996). Some form of Newton’s method with numerical derivatives has the advantage of
providing the optimum as well as the second derivative of the concentrated log-likelihood
at the optimum ρ̂. This numerical estimate of the second derivative in conjunction
with other information can be useful in producing a numerical estimate of the variance-
covariance matrix for the parameter.

3.2 Interpreting parameter estimates

Linear regression parameters can be interpreted simply as the partial derivation of the
dependent variable with respect to the explanatory variable. This arises from linearity
and the assumed independence of observation in the model: y =

∑k
r=1 xrβr + ε. The

partial derivatives of yi with respect to xir have a simple form: ∂yi/∂xir = βr for all i, r;
and ∂yi/∂xjr = 0, for j 6= i and all variables r.

In models containing spatial lags of explanatory or dependent variables, interpreta-
tion of the parameters becomes richer and more complicated. A number of researchers
have noted that models containing spatial lags of the dependent variable require special
interpretation of the parameters (Anselin and LeGallo, 2006; Kelejian et al., 2006; Kim
et al., 2003; LeGallo et al., 2003).

Spatial regression models expand the information set to include information from
neighbouring regions/observations. Consider the SDM model which we have re-written
as:

(In − ρW )y = Xβ +WXθ + ιn + ε

y =
k∑
r=1

Sr(W )xr + V (W )ιnα + V (W )ε (21)

Sr(W ) = V (W )(Inβr +Wθr)

V (W ) = (In − ρW )−1 = In + ρW + ρ2W 2 + ρ3W 3 + . . .

11



Equation (21) can be re-written as:
y1

y2
...
yn

 =
k∑
r=1


Sr(W )11 Sr(W )12 . . . Sr(W )1n

Sr(W )21 Sr(W )22
...

... . . .
Sr(W )n1 Sr(W )n2 . . . Sr(W )nn



x1r

x2r
...
xnr

 (22)

+V (W )ιnα + V (W )ε

It follows from (22) that the derivative of yi with respect to xjr is potentially non-zero,
taking a value determined by the i, jth element of the matrix Sr(W ).

∂yi/∂xjr = Sr(W )ij

An implication of this is that a change in the explanatory variable for a single region can
potentially affect the dependent variable in all other regions. It is also the case that the
derivative of yi with respect to xir does not usually equal βr as in least-squares.

∂yi/∂xir = Sr(W )ii

The own derivative for the ith region measures the impact on the dependent variable
observation i from a change in xir. This impact includes the effect of feedback loops
where observation i affects observation j and observation j also affects observation i as
well as longer paths which might go from observation i to j to k and back to i.

4 Empirical Implementation

4.1 Data

Our study uses a sample of 107 countries for the period 2000-2011. The sample contains
25 African countries, 21 American countries, 23 Asian countries, 36 European countries
and 2 Oceanic countries. We extract our basic data from the Feenstra et al. (2013) Penn
World Table (PWT version 8.0). This database contains information on tfp growth, and
the index of human capital per person (among many other variables) for a large number
of countries. We measure all variables for i = 1, ...., n as the average over the period
2000-2011. Our index of human capital per person is based on years of schooling (Barro
and Lee, 2012) and returns to education (Psacharopoulos, 1994).

R&D is often said to have two faces: the first is innovation, while the second is to
facilitate the understanding and imitation of others’ discoveries. The latter is related
to absorptive capacity and provides for efficient technology transfer. R&D is likely to
take place at the firm or industry level, but will ultimately promote overall economic
development through enhanced productivity. R&D has two sources, domestic (as already
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described), or it can be generated from international spillovers. The literature seems to
suggest that both channels are important for TFP growth. R&D expenditure data are
from the United Nations Educational, Scientific and Cultural Organization.

The interaction matrix W corresponds to the so-called spatial weights matrix com-
monly used in spatial econometrics to model spatial interdependence between observa-
tions (LeSage and Pace, 2009). More precisely, each country is connected to a set of the
neighbouring countries by means of a purely spatial pattern introduced exogenously in
W. Elements wii on the main diagonal are set to zero by convention, whereas elements
wij indicate the way country i is spatially connected to country j. In order to normalize
the outside influence upon each country, the weight matrix is standardized such that the
elements of a row sum up to one. For the variable x, this transformation means that
the expression Wx, called the spatial lag variable, is simply the weighted average of the
neighbouring observations. It is important to stress that the friction terms wij should
be exogenous to the model (Ertur and Koch, 2007). Traditionally, connectivity has been
understood as geographical proximity, and various weight matrices based on geographi-
cal space have thus been used in the spatial econometrics literature, such as contiguity,
nearest neighbours and geographical distance-based matrices. However, the definition is
in fact much broader and can be generalized to any network structure to reflect any kind
of interactions between observations. This is why we prefer to use the term interaction
matrix for W.

We specify two different interaction matrices. The first, Wt, is defined as follows:

wij =

{
0 if i = j

Mij if i 6= j

where Mij is defined as the average imports of country i from country j over the 1990-
1999 period to prevent endogeneity problems that might arise. We design the second
interaction matrix Wd using a decreasing function of pure geographical distance. This
interaction matrix is defined as follows:

wij =

{
0 if i = j
1
d2ij

if i 6= j

Trade flows are from the un comtrade database.4 We use bilateral distances (in kilo-
metres) between capital cities taken from the cepii database.5 They are computed using
the great circle distance formula applied to the capitals’ geographic coordinates.

In order to visualize potential interaction patterns between countries, we consider four
interdependent countries. The structure of interaction is represented in the following
(4× 4) matrix:

4http://comtrade.un.org/
5http://www.cepii.fr/
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W =


0 M12 M13 M14

M21 0 M23 M24

M31 M32 0 M34

M41 M42 M43 0


The flows of technology between countries go from country j to country i (for instance
M23 represents the flow from country 3 to country 2). In other words, each row represents
the receiving country and each column represents the emitting country.

Since the Moran test for spatial autocorrelation among residuals shows that there is
no spatial correlation in error terms (See Table 1 columns 2 and 3),6 we do not need to
use a spatial econometric specification that takes into account the spatial lag of the error
term, such as the spatial error model (SEM), general spatial model (GSM) or spatial
Durbin error model (SDEM)(see Anselin, 1988a).

In the next section, we perform several estimation procedures depending on the spatial
interdependencies. First, we estimate the model (12) without spatial interdependencies
(i.e. ρ = 0) using ols. Second, we estimate two versions of spatial models using our two
interaction matrices Wt and Wd: a SAR model and an SDM model.

4.2 Estimation results

As explanatory variables in our SDM regression model we use R&D, a constant term, and
the human capital index for the period 2000-2011. Since this is a Spatial Durbin model,
the explanatory variables also include the average of these variables from neighbouring
countries, which we label as W-R&D and W-hc. Table 1 displays the full results:

———————————————————————————————–
Table 1 around here

———————————————————————————————–

Table 1 presents least-squares, SAR and SDM model estimates based on our two
interaction matrices. The results show that the coefficient ρ associated with spatial au-
tocorrelation is positive and significantly different from zero for all spatial estimations
(Table 1 columns 2-5). Since the estimate for the parameter ρ is significantly different
from zero, least-squares estimates are biased and inconsistent. This coefficient captures
technological diffusion from neighbouring countries’ TFP growth. We note that the esti-
mate for the parameter R&D is positive and significant for all regressions, but that the
human capital turns out to be insignificant using SAR.

As regards the average impacts from neighbouring countries, the estimate for the pa-
rameter W-R&D turns out to be significantly different from zero. Whereas the coefficient

6The tests have been made on the OLS SAR and SDM models (See Anselin, 1988b).
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related to the parameter W-hc is non-significant. This suggests that the SAR models suf-
fer from a bias of omitted variables. Therefore, in what follows we focus on the estimates
of the SDM models alone.

The SDM model estimates cannot be interpreted as partial derivatives in the typical
regression model fashion. Spatial regression models exploit the complicated dependence
structure between observations representing countries, regions, etc. Because of this, pa-
rameter estimates contain a wealth of information about relationships among the obser-
vations or regions. A change in a single observation (region) associated with any given
explanatory variable will affect the region itself (a direct impact) and potentially affect
all other regions indirectly (an indirect impact). To assess the signs and magnitudes of
impacts arising from changes in the two explanatory variables, we turn to the summary
measures of direct, indirect and total impacts presented in Table 2

———————————————————————————————–
Table 2 around here

———————————————————————————————–

Let us consider the direct impacts of R&D. We see that these are close to the SDM
model coefficient estimates associated with the variable R&D reported in Table (1). The
difference between the coefficient estimate of 0.005 (0.007) and the direct effect estimate of
0.006 (0.007) in Table (2) of 0.001 (0.000) represents feedback effects that arise as a result
of impacts passing through neighbouring countries and back to the country itself. The
discrepancy is positive (null) since the impact estimate exceeds the coefficient estimate,
reflecting some positive (null) feedback. Since the difference between the SDM coefficient
and the direct impact estimate is very small, we could conclude that feedback effects are
small and not likely to be of economic significance. The feedback effects of human capital
are very small (see Tables 1 and 2)

From the table we see that the direct impact of R&D is positive and significant,
suggesting a positive impact on TFP growth. The indirect effect of R&D is positive and
significant. This suggests that R&D in neighbouring countries has a positive impact on
TFP growth, which seems intuitively plausible. The total effect from R&D is positive
and comprised mostly of the indirect impact, a large R&D spillover.

The direct impact of human capital is positive and significant, suggesting a positive
impact on TFP growth. However, the indirect effect of human capital is not significant.
This means that we do not have an impact of human capital from neighbouring countries.
The total effect of human capital is positive and composed mostly of the indirect impact.

We can interpret the total impact estimates as elasticities since the model is specified
using logged growth of TFP, R&D and human capital. Based on the positive 0.043
estimates for the total impact of R&D, we can conclude that a 10 percent increase in
R&D would result in 0.43 percent growth in TFP.
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5 Conclusions

We have proposed an alternative method for estimating technology spillovers based on
a model in which technological progress shows up as an expansion in the number of
varieties of products. We have analysed the major determinants of TFP evolution by
decomposing it into quality and variety components. To deal with both components, we
have introduced a country’s distance from the technological frontier and a variable that
captures international R&D spillover. In doing so, we have obtained a Spatial Durbin
model.

We have performed several estimation procedures depending on the spatial interde-
pendencies. First, we have estimated the model (12) without spatial interdependencies
(i.e. ρ = 0) using OLS. Secondly, we have estimated two versions of spatial models using
our two interaction matrices Wt and Wd: a SAR model and an SDM model. The em-
pirical results have shown the presence of spatial autocorrelation suggesting international
technological diffusion between countries. Moreover, when the spatial autocorrelation is
modelled, OLS is no longer appropriate: the estimates obtained by this method are not
convergent if there is a lagged endogenous variable and they are inefficient in the presence
of spatial autocorrelation of errors.

The results of our estimation also show a positive direct impact of R&D and a positive
indirect impact suggesting R&D spillover from neighbouring countries. The total impact
of R&D shows that a 10 percent increase in R&D results in 0.43 percent growth in TFP.
The results also highlight a positive impact of human capital but no spillover from the
neighbouring countries’ human capital.

The role played by technological spillovers has constituted the main focus of this
analysis. We show that in addition to traditional factors such as R&D and human capital
stock, technological spillovers strongly impact productivity growth. The technological
spillovers are captured by both the spatial autocorrelation coefficient and the indirect
impact of R&D.
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Table 1: Estimation results
Model ols sar sdm

W-d W-t W-d W-t
Dependent V. tfpg tfpg tfpg tfpg tfpg

R&D 0.007** 0.006* 0.006* 0.005* 0.007**
(0.003) (0.003) (0.003) (0.002) (0.003)

hc 0.024* 0.023 0.020 0.029* 0.034**
(0.014) (0.016) (0.016) (0.015) (0.017)

ρ 0.436*** 0.406*** 0.386*** 0.184***
(0.114) (0.106) (0.120) (0.037)

w-R&D Moran I-stat Moran I-stat 0.009* 0.026*
3.641 1.993 (0.004) (0.014)

w-hc Prob Prob -0.019 0.089
<0.001 0.046 (0.034) (0.066)

R2 0.042
AIC -2.626 -2.639 -2.608 -2.815
BIC -2.552 -2.564 -2.484 -2.690

Notes: Standard errors are given in parentheses. *** significant at 1%; ** significant
at 5% and * significant at 10%. AIC and BIC stand for the Akaike and the Schwarz
information criteria, respectively.
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Table 2: Cumulative effects

Models Variables Direct Indirect Total
R&D 0.006* 0.004 0.011*

SAR-Wd (0.003) (0.002) (0.006)
hc 0.023 0.017 0.041

(0.017) (0.015) (0.032)
R&D 0.006* 0.004 0.010*

SAR-Wt (0.003) (0.003) (0.005)
hc 0.021 0.013 0.035

(0.017) (0.013) (0.029)
R&D 0.006** 0.019* 0.026**

SDM-Wd (0.002) (0.011) (0.012)
hc 0.029* -0.016 0.012

(0.015) (0.473) (0.043)
R&D 0.007** 0.036** 0.043**

SDM-Wt (0.003) (0.018) (0.022)
hc 0.033* 0.098 0.132

(0.018) (0.080) (0.156)

Notes: Standard errors are given in parentheses. *** signif-
icant at 1%; ** significant at 5% and * significant at 10%.
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