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Development of a spatio-Temporal Autoregressive (STAR)
Model Using Spatio-Temporal Weights Matrices

Jean Dubé et Diégo Legros”

This paper addresses the development of a statistical model for spatial data collected
over time, such as real estate data. A spatio-temporal autoregressive (STAR) model,
based on spatial and temporal weight matrices, is proposed. The spatial and
temporal weight matrices are used to develop simple spatio-temporal weight
matrices. The model is obtained using existing spatio-temporal lag models (STLM)
and spatial error models (SEM). The STAR model explicitly considers possible local
temporal dynamic effects as well as spatial spillover effects given time reality. The
model is then applied to empirical investigation using real estate data on apartments
sold in Paris, between 1990 and 2001, and hedonic modelling using data.
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1 Introduction

The problem of spatial dependence between observations has been recognized in
literature for forty years (Cliff and Ord, 1969; Anselin, 2010). Spatial autocorre-
lation is multidirectional, as opposed to the classical unidirectional temporal auto-
correlation problem in time series analysis. This complexity explains why spatial
autocorrelation has received such attention, since it can have various consequences
on estimated coefficients and variance, depending on sample size. (Griffith, 2005 ;
Lesage and Pace, 2009).

Most of the spatial econometric methods rely on the construction of an “exoge-
nous” spatial weight matrix, and literature on the structure of these matrices is
quite extensive (Griffith, 1996; Getis and Aldstadt, 2004; Getis, 2009). However,
the exogenous spatial weight matrix is developed in a strictly spatial context and
is based on geographic distances or contiguity relations (Chasco and Lopez, 2008).
Little attention has been paid to the importance and impact of using a strictly spa-
tial weight matrix in spatio-temporal analysis for data that is different from the
conventional panels (Hsiao, 2003; Baltagi, 2003, 2005) or pseudo-panels (Deaton,
1985; Heckman and Robb, 1985; Moffitt, 1993) structure.

The first law of geography states that “everything is related to everything else,
but closer things more so” (Tobler, 1979), however, time reality suggests that future
observations cannot influence past observations. Since space and time are different
dimensions with different characteristics, it is quite plausible to believe that the use
of spatial statistics and models has to be adjusted to account for the time dimension.
As argued by Dubé and Legros (2010), the uses of a spatial weight matrix in a spatio-
temporal context may lead to overestimation of the spatial dependence path when
spatial data is collected over time. If the overestimation is significant, this may lead
to a problem similar to that in time series analysis: unit root of the coefficient on the
lagged variable (Fingleton, 1999; Lee and Yu, 2009). This problem can have several

implications for estimated coefficients since it can produce spurious regression and



results.

Spatio-temporal lag models (STLM) have been developed to address this prob-
lem by creating spatial and temporal weight matrices (Pace et al., 1998, 2000; Tu
et al., 2004; Sun et al., 2005). The matrix product uses in STLM attempt to cap-
ture indirectly spatio-temporal aspects. However, this approach may complicate
the interpretation of such effects. The development of a STLM based on a single
spatio-temporal weight matrix (Smith and Wu, 2009) can be seen as a simple inno-
vation in the development of more sophisticated versions of spatio-temporal models.
However, the development of weight matrices remains a major challenge (Griffith,
1981; Griffith, 1996; Getis and Aldstadt, 2004; Fingleton, 2009; Getis, 2009). The
scarcity of research related to the importance and the impact of the temporal dimen-
sion in spatial modelling, when data is different from conventional panel structure,
reinforces the main objective of this paper.

This paper proposes a spatio-temporal autoregressive (STAR) model based on
STLM and spatial error models (SEM), by constructing different spatio-temporal
weight matrices that capture both temporal dynamic effects in a spatial context and
spatial dependence effects in a temporal context. The spatio-temporal matrices are
developed to account for the unidirectionality of temporal effect for a given vicinity,
and multidirectional spatial spillover effect for a given time period. In other words,
different matrices are developed to capture temporal effects in a spatial context as
well as spatial effects in a temporal context. The model is then estimated using
apartments sold in Paris (France) between 1990 and 2001. The results suggest that
the temporal dynamic effect in a spatial context and the spatial dependence effect
in a temporal context are both highly significant.

The paper is divided into six sections. The first section proposes a brief overview
of existing spatio-temporal applications in real estate, and underlines the importance
of correctly modelling the spatial dependence pattern in a spatial and temporal con-

text that is different from the panel or pseudo-panel context. The second section



presents the STAR model proposed, based on the construction of different spatial
and temporal weight matrices to obtain spatio-temporal weight matrices by using
the Hadamard product. The third section presents data used to estimate the model,
while the fourth section discusses the estimation results of a hedonic price model
applied to Paris, France. The fifth section discusses the advantages and drawbacks
of the developed STAR model while suggesting several promising avenues for future
research. The final section proposes a brief conclusion that underlines the contribu-
tion of the paper to real estate research in particular, and to economic geography

and regional science in general.

2 Existing spatio-temporal models in real estate

Real estate is a specific research field in which spatial dimension may have an impor-
tant effect on price determination while sales data are collected continuously over
time. Both dimensions can have an influence on market valuation depending on the
size of the two dimensions (Dubé et al., 2011a; Dubé et al., 2011b). Tt is widely
accepted that price is largely related to space in real estate, as the adage “location,
location, location” states. However, the temporal dimension can also have a signifi-
cant influence on house prices, given that price changes are partly influenced by the
economic conjuncture.

Recently, the development of panel econometric techniques has been extended
to spatial data structure (Elhorst, 2003; Anselin et al., 2006 ; Anselin, 2007 ; Yu
et al., 2008, Yu and Lee, 2010; Monteiro and Kukenova, 2009; Lee and Yu, 2010).
However, this work relies on the case where spatial data is repeated over time,
which is not necessarily the case for real estate transactions. As can be seen with
the repeated sales approach used to construct the price index, frequently-sold houses
represent only a small part of the total sample (Case and Shiller, 1989; Abraham and

Schauman, 1991; Clapp et al., 1991; Dubé et al., 2011b). These particularities of the



data prompted the development of new adapted models, such as the spatio-temporal
lag model (STLM).

STLMs (Pace et al., 1998, 2000) are a natural extension of the spatial autore-
gressive (SAR) models (LeSage and Pace, 2009) that are largely documented and

used in spatial econometrics (equation [IJ).

(I—pW)y=XB+e (1)

Where y is a vector of a dependent variable, W is a weight matrix, X is a
matrix of independent variables, 5 is a vector of coefficients to be estimated and e
is an error term supposed to be independent and identically distributed. The main
difference between the SAR and STLM lies in the specification of the weight matrix
used in the estimation of the autoregressive parameter (equation 2 and B]). While
the SAR model is based on a spatial weight matrix (equation ), S, STLM uses
a spatial weight matrix, temporal weight matrix, 7', and matrix products of both
weight matrices (equation ). The matrix products, ST and T'S then account for

indirect spatio-temporal effects that could not otherwise be captured.

W= 2)

W = 1/155 -+ Q/JTT -+ Q/JSTST -+ Q/JTsTS (3)

Where 9g, U1, s and Yrg are unknown coefficients to be estimated. The spatial
weight matrix is based on geographic distance between observations (equation [))
while the temporal matrix is defined, assuming that observations are chronologically

ordered from the earliest to the latestE, by a lower triangular matrix of singular values

(equation ).

! This simplifies the construction of the matrix and implicitly assumes that all past observations
can potentially influence actual observations while future (and some present) observations have no
influence on current observations.
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Tu et al. (2004) and Sun and Tu (2005) generalized the STLM approach by
using different possibilities for spatial effects. Applied to the condominium real
estate market, the authors decompose the spatial effect into two distinct effects: the
building effect, S;, and the neighbourhood effect, S;. The spatio-temporal matrix

then takes on a more complex expression (equation [6).

W= wsl Sl + ¢S252 + wTT + 'QZ)S1T51T+
Vs,7S9T + Vg, T'S1 + Yrs, TS,

(6)

Where g, , s, Y1, ¥s, 7, ¥s,r, ¥rs, and Yrg, are unknown coefficients to be
estimated.

In both STLM specifications, the spatial weight matrix is based on a distance
decay function or contiguity matrix, and no distinction is implicitly made with re-
gard to the time dimension. The form of the temporal weight matrix supposes that
only past observations have a potential effect on present observations. The main
hypothesis of the STLM is that spatial and temporal dimensions have distinct effects
and can be identified using many matrices in the specification of the autoregressive

process. However, by using a general multidirectional spatial weight matrix in the



general spatio-temporal expression (equations Bl and [B]), the model implicitly sup-
poses that past observations can be influenced by future observations. This effect is
captured through the estimated coefficients 15 or ¥g, and 1g,. It also supposes that
the real estate market has a perfect memory of past sales since the same weight (of
one) is attributed to the lower element of the temporal matrix. Moreover, it neglects
the possibility of interaction over the same time period, the potential influence of
any close future observationH and estimates only the indirect spatio-temporal effects,
as measured by the coefficients associates with the matrices product, s and 97g
or g, Ys,r, Yrs, and Prs,.

These situations may lead to overestimation or bias in the spatial autoregressive
parameter since space and time are not neutral dimensions and cannot be separated
(Dubé and Legros, 2010 forthcoming). The real estate market does not necessarily
have an independent spatial structure and an independent temporal structure but
probably does have a unique spatio-temporal structure that has to be synthesized by
matrices that consider both dimensions simultaneously. If spatial proximity effect
is largely recognized, it is hard to ignore the time dimension of the effect. As Smith
and Wu (2009) noted: “since housing prices are well known to be influenced by the
prices of recent house sales nearby, one must allow for the possible spatio-temporal
dependencies between such prices”. In other words, if currently observed prices are
influenced by past sales prices, it is likely that the influence is concentrated on a few
past time periods.

Smith and Wu (2009) proposed another way of formalizing the spatio-temporal
structure in the real estate market. They first suggest that the hedonic price equa-
tion should adopt an autoregressive process (equation [I]), as previously presented,
but use a unique spatio-temporal specification of the weight matrix instead of sepa-
rate spatial and temporal weight matrices, and specify the spatio-temporal lag on the

dependent variable only. The spatio-temporal weight matrix is based on a threshold

2Since it is possible that both houses were active in the market at the same time.



time interval as well as a threshold distance cut-off. They suggest that the param-
eter associated with the spatio-temporal lagged dependent variable should measure
the intensity of the strength of price dependencies. Then, it is assumed that the
temporal dependence effect could be modelled through a temporal autoregressive

process among residuals ().

e=D(ple+ C(p)u (7)

Where D(p) and C(p) are, respectively, lower triangular and diagonal matrices
that capture the temporal effect of the price dynamic and wu is a white noise term.
The structure of the matrix explicitly considers that there is no simultaneity in space
and in time, which simplifies the analysis.

The different models assume that the temporal effect can be modelled inde-
pendently of the spatial context while the spatial context should account for the
temporal dimension. More importantly, there is no simultaneity between space and
time. For these reasons, it seems appropriate to develop a spatio-temporal autore-
gressive (STAR) model that allows for the dynamic temporal effect to be spatially

adjusted and for the spatial effect to be temporally adjusted.

3 Another spatio-temporal model

The specification proposed in this paper is based on the usual hedonic price model
(HPM - equation [§), which expresses the sale price of a complex goodlj stacked in
the vector y of dimension Nr x 1, as a function of all the k different characteristics of

the good, stacked in a vector X of dimension Ny x K where K is the total number

of observed characteristics (Rosen, 1974)

3Usually, the sale price is considered using a logarithmic transformation since this produces a
better approximation of the normal distribution and allows for a better control of heteroskedasticity.
“Including a constant term.



y=Xp+e (8)

Where (5 is a K x 1 vector of coefficients, to be estimated, reflecting the implicit
price of the characteristics and € is a vector of the error term of dimension Ny x 1.

As Smith and Wu (2009) proposed, the specification can introduce some autore-
gressive process based on the STLM version of the HPM (equation[). The dynamic
spatial effect, which can be seen as a time lagged peer effect (Coleman et al., 1966;
Manski, 1993), is based on past observations that account for spatial reality. This
model can also be seen as a natural extension of the hedonic price equation account-
ing for comparable sales, an approach usually adopted by real estate professionals

(DesRosiers et al., 2011).

y=y1p+XB+e (9)

Where p is an unknown parameter to be estimated that represents the effect of
neighbouring house prices or dynamic spatial effect. 3, ; is a time dynamic spatial
effect variable or spatially time lagged value of the dependent variable y based on a
spatio-temporal weight matrix, W, that can be seen as a kernel that considers sales
that occurred within a given earlier time period, defined within a threshold time

period, and in a given vicinity, identified using a threshold distance (equation [I0).

Y1 = Wiy (10)

The spatio-temporal weight matrix, W, is based on a spatial weight matrix,
S1, and a temporal weights matrix, 77, of dimension Ny x N7 to be constructed.
Once the spatial and temporal weight matrices are defined, the HadamardH matrix

product is used to obtain a unique spatio-temporal weight matrix that accounts for

’Defining a product-to-product multiplication of matrices. Thus, a general element of the

spatio-temporal weight matrix can be expressed as wq,; = s1,; * t1,;-
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spatial dimension as well as temporal dimension simultaneously (equation [TT]).

W1 = Sl ® T1 (11)

The final definition of the spatio-temporal weight matrix, WW; can then be nor-
malized, as usual, to ensure that y;_; is a mean value of y observed before in a given
vicinity.

A general element of the spatial weight matrix S; of dimension Ny x Nr, 81455
is determined by an inverse distance function based on Euclidian distance between
observations 7 and j, d;;. The inverse distance function can consider different ef-
fects by introducing a penalty parameter on distance, «, that can take the values
of 0 (dummies indicators), 1 (inverse geographic distance) or 2 (inverse square ge-
ographic distance). Moreover, the specification can assume that the effect is null
when distance is too large. To ensure this, a critical distance cut-off value, d, can be
introduced (equation [[2). Such specification considers contiguity as a special caseH

d* ifdy; <d

Slij = Y (1 2)
0 otherwise

Supposing that data have been previously chronologically ordered, a general
element, ¢y, of the temporal weight matrix 71, of dimension Nt X N7, is determined
by a time function based on time elapsed between sales (or observations) i and
J. The time elapsed between observations, defined by v; — v; where v; is the time
dimension considered by modellers (days, months, quarters, years, etc.), can be used
to construct an inverse distance functiOnEI, similar to the one of spatial relation, using
an exogenous penalty parameter, v. The penalty parameter can take a value of 0

(dummies indicators), 1 (inverse time distance) or 2 (inverse square time distance).

6Note that a contiguity relations matrix can be viewed as a special case of the definition when
a = 0 and the cut-off distance d is adapted to each observation and is comparatively small so that
only immediate neighbours have a defined relation.

Since the value of v; — v; can be negative (i is observed after j), the definition has to use
absolute values to insure that the matrix 7" has non-negative values.

11



Moreover, the specification can introduce limitation on time effect by introducing a

critical time distance cut-off, T (equation [I3])

lv; — ;|77 if v, — vl <
b, =4 1 if v, = v; Vi # j (13)
0 otherwise

One of the two main differences between the approach proposed by Pace et
al. (1998) and the approach developed here is the definition of the autoregressive
function (equations Bl and [6). The model assumes that the spatio-temporal lag
influence, defined in equation[@ explicitly considers the multidirectional spatial effect
and the unidirectional time effect in a single weight matrix (equation [II). The
definition of the single weight matrix is similar to that developed by Smith and Wu
(2009) and eliminates potential spurious spatial relations among observations (Dubé
and Legros, 2010 forthcoming). By using the lower triangular part of the 77 matrix,
the spatio-temporal lag variable captures the dynamic effect of price determination
in a given vicinity. The spatio-temporal lag coefficient represents a dynamic peer
effect, which is different from Smith and Wu’s specification.

However, this specification does not ensure that all spatial spillover effect that
could be generated by omitted spatial variables from the HPM model is completely
taken into consideration. The second main difference with the STLM and the STAR
model lies in the introduction of a spatial dependence effect. To account for this
possibility, the model introduces a spatial error model (SEM) based on the spec-
ification of a possible spatial relation, among the error terms within a given time

period (equation [IF]).

e = A\oe+u (14)

8The definition of the temporal weight matrix adopted here generalized the specification of Pace
et al. (1998, 2000) and Smith and Wu (2009).
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Where u is an independent and identically distributed error term of dimension
Np x 1, X is a scalar and unknown parameter to be estimated and W is another
spatio-temporal weight matrix based on a different definition of the spatial relations
(Sp) and the temporal relations (7p). These different weight matrices can be obtained
using the same specification of S; and T} by using different cut-off criteria, defined by
the d and v values (equations [[2 and [[3J), or by using different penalty parameters,
defined by the a and v parameters in the same equations. The W, matrix, defined in
equation (I3), is then standardizedH and can be viewed as a spatio-temporal kernel

used to evaluate the spatial dependence effect over a given time period.

Wo = Sy © Tp (15)

The specification of model (equation [I6]) is defined by the STLM using a unique
spatio-temporal weight matrix (equation[0) and a SEM using another spatio-temporal

weight matri .

=yap+XpB+e€
Y =Yi—1p B (16)

e = \Whe+u
The model can also include more dynamic effects in the model as in equation
by developing different spatio-temporal matrices that take into account further lags
dynamic time effects (equation [IT). These further lags dynamic effects can be ob-
tained by using a different specification of the time weight matrix, 7,., using different

critical time distance cut-off, v,.. [1l].

W,=5 06T, (17)

9The matrix is standardized to ensure comparability between results, as is the case for the
spatial weight and/or spatio-temporal weight matrix.

10The model can be estimated using the maximum likelihood SEM routine developed by LeSage
on the MatLab software by previously generating the y;_; variable given the WW; matrix constructed
and adding it to the left hand side (independent variables) of the equation.

"7t should be noted that the resulting time weight matrix is obtained by removing the previous
time effect: T, — T, _1.

13



Using the new time weight matrices, it is possible to construct new time lag

variables (equation [I8]).

Yt—r = Wry (18)

The new variables, which consist of different vectors of spatially time lagged
dependent variables over r periods, are based on different spatio-temporal matrices
and stacked in a matrix, Y;_, (equation [[9) that can be introduced in the origi-
nal specification. The ¢, vector of unknown coefficients associated with each time
lagged variables represents the dynamic time peer effects associated with the housing

market and allows the evaluation of the persistence of such effect.

y:Y;ffrpr"'_Xﬁ‘i‘E
(19)

where € = A\Wye + u

Of course, the STAR model can be extended, in the same way, to include dynamic

effects over some, or all, of the independent variables.

4 Data

The data used to estimate the STAR model comes from the “Base d’Informations
Economiques Notariales” (BIEN), compiled by French notaries, who have the monopoly
in registering real estate transactions. In France, all real estate transactions are reg-
istered by a notary, who checks the property rights, drafts the legal sales contract
and deed, sends the record to the Mortgage Registry (in French “Conservation des
hypothéques”) and collects the stamp duty for the government. Notaries therefore
have access to the transaction price and the dwelling characteristics that are written
in the sales contract. Moreover, each notary has to send information on the price

fetched by the property to the tax authorities, since a sales tax, as a function of the
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price, is levied on transactions. In principle, the data cover all sales; they provide
actual transaction prices; the series are available for regular intervals and over a long
time period; data frequency is adequate as the notaries must send the information
and pay the sales tax to the Finance Ministry within two months after a sale.

The database contains the address of the dwelling, which makes it possible to
geolocate the sale by longitude and latitude. This information is useful for creating
spatial distance and weight matrices. It also contains information about the char-
acteristics of the dwelling: type of dwelling, date of sale, living area (in m?), date
of construction, number of rooms, mean area/room, number of bathrooms, number
of garages or parking spaces, and for apartments, floor level and presence of a lift,
number of service rooms (Table [[). Many physical amenities of the dwelling have

to be discarded since they are not sufficiently documented.
INSERT TABLE [l HERE

To estimate the STAR model, real estate prices and structural characteristics on
apartments sold in Paris, France, between 1990 and 2001 are used. The final data
base sample contains 127,787 observations. The Paris urban region, “Ile de France”
is formed by four departments (Paris, Hauts-de-Seine, Seine-Saint-Denis and Val-
de-Marne). This information is used to introduce some fixed effects on sale prices
over space and capture, in some way, the effect of omitted spatial variables in the
price equation, since the average sales prices vary among the departments (Table
2). The Paris department represents more than half of the total sales, while the

frequency of sales varies with the years considered (Table []).
INSERT TABLES 2 AND Bl HERE

Because our final sample is quite large, computations can be very time-and
memory-consuming. For this reason, the models are estimated using a sub-sample

of 10,000 observations drawn by simple random sample. However, in order to check
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the stability of our results, we use three random sub-samples containing 10,000 ob-
servations each. The statistics describing the sub-sample are comparable to those of
the total sample (Tables [ Bl and [6]) while the spatial dispersion of the observations

is quite similar (Maps [, 2 and [(]).
INSERT TABLES 4, Bl AND [6l HERE

INSERT MAPS I 21 AND 3 HERE

5 Results

The first step is to build the spatial, temporal and spatio-temporal matrices to be
used in the estimation process. Two specifications of spatial weight matrices are
used: i) one with the inverse square distance, based on a 500 metres kernel, Sj, to
create the spatio-temporal lagged matrix, Wj, defined in equation ([III); ii) and one
based on the (15) closest neighbours, Sy, to calculate the spatio-temporal weight
matrix, Wy, defined in equation (I&)). Three temporal matrices are constructed: i)
one that accounts for past value of the two quarters before 77; ii) one that accounts
for past value of the four quarters before 75, to construct the dynamic spatial effect
variables, y;_1 and y;_2, (equation [[I))1 iii) and one that accounts for the present
period as well as one year prior, Tj, to construct the spatio-temporal weight matrix
used to control for spatial effect in temporal context, Wy, as defined in equation
@@.

The second step consists in defining a price equation (equation [§) that includes
the different physical amenities available: the living area (in square metres), the
number of bathrooms, the presence of a lift in the building, the presence of a garage,
the presence of a terrace, the presence of collective heating, the time period when

the apartment was constructed and the floor on which the apartment is located. To

12The original matrix that contained past values of two quarters before T} had to be subtracted
from the matrix containing the four quarters before 75 to ensure that the final specification included
only data observed between two and four quarters.

16



ensure that the model controls for some location differences, dummies identifying
residential fixed effects within the departments are introduced in the model. Finally,
since the database has an important temporal dimension, dummy time variables are
also introduced to the price equation to control for the nominal aspect of the sales
price.

The coefficients related to the physical amenities in the HPM all have the ex-
pected signs and suggest that apartments with better facilities are sold at higher
prices. The coefficient related to the living area is greater than one, suggesting that
prices are strongly related to the total living area. This may be characteristic of
apartments in urban areas, and especially in Paris since apartments are quite small
and rare. There is an important result for the location dummies identifying the
department where the apartment is situated. It clearly shows that apartments sold
in Seine-Saint-Denis are less expensive than apartments sold elsewhere in the Paris
area. The model suggests that the age effect is not linear. The price is lower for
apartments built before 1850 and for apartments built between 1850 and 1980, while
it is higher for those constructed between 1980 and 2000 (Column 1 in Tables [7,
and [@)). It also suggests that the same conclusion can be drawn regarding the floor
the apartment is on. As compared to apartments on the ground floor, those located
higher command a market premium that rises from the first floor to the third and
fourth floor, but declines for those located higher than the fifth. The results are
shown to be very stable considering the sub-samples used and the HPM account
for about 77% to 79% of the total variance of the sales prices. However, Moran’s
1 statisti, varying between 0.19 and 0.20, shows that spatial dependence among
residuals of the model is statistically significant, suggesting that an appropriate

method should be used.
INSERT TABLES [, B and @l HERE

The first specification estimated uses a dynamic lagged peer effect, which can

I3Evaluate using the spatio-temporal weight matrix definition in equation (4.
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be seen as a general case of the STLM (equation @]). The point of interest lies in
the coefficients associated with the spatio-temporal lagged variable terms that are
strongly significant and high (about 0.20 for the first lag and 0.01 for the second lag
- Column 2 in Tables [ Bland [@]). The estimated coefficients are comparable but the
model has a greater predictive power since it can explain between 80% and 83% of
the total variance, which is almost 3 percentage points higher than the OLS method.
The substantial rise in the R? suggests that there is an important gain from using
the specification that considers the spatially dynamic temporal effect. However,
spatial autocorrelation among residuals remains, as shown by the Moran’s [ indices
that vary between 0.09 and 0.12. If there is a slight decline in the indices, it is not
enough to entirely eliminate the spatial dependence among residuals. Even when
controlling for potential spatial dynamic effects, there is still spatial autocorrelation
among residuals, and this suggests that it is important to incorporate both effects
in a complete model.

The introduction of the error autoregressive process (equation [[9) reduces the
impact of the lagged peer effect variables, even if it is still significant. The reduction
in the estimated coefficients suggests that there is more than just a spatio-temporal
lag pattern in price determination. Both the spatio-temporal lag effect and the
spatio-temporal error effect prove to be highly significant (Column 3 in Tables [T,
and [0). The final results suggest that some spatial autocorrelation estimated is
in fact the result of a dynamic process over time, as it can be seen by comparing
the STAR results to the classic SEM using a spatial matrix based on the 15 nearest
neighbours, Sy (Column 4 in Tables[7 R and [@)). Thus, the hypothesis that the SEM
approach overestimates the impact of latent spatial component cannot be, partially,
rejected since the estimated coefficients for the SEM are statistically different from
that obtained with the STAR model. The differences between coefficients are smaller
than the sums of the coefficients related to the time dynamic price variables, which

suggests that spatio-temporal structure also have an important role to play on the
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estimated coefficients. This situation supports another hypothesis, previously high-
lighted, that the specification of the matrix used to calculate the spillover effect in
residuals fails to capture the total effect of the coefficients related to the dynamic
effect

The temporal dynamic effect, which can be seen as the influence of comparable
sales by real estate professionals, plays a significant role in the model by improving
price prediction, as shown by higher R? and R (Column 3 vs Column 4 in Tables
[ B and @). Nevertheless, the STAR model suggests that the comparable sales
approach alone is not enough to explain the total price determination process over
space, suggesting that the apartment price is not only conditioned by the individual
characteristics and by its spatial location, but also by the past observed prices
close to the apartment sold. Even when the specification of the spatial distance
matrix used to construct the dynamic variables is changed, the coefficients are still

comparable and highly significant

6 Discussion

The STAR model developed considers both space and time dimensions simultane-
ously, in a flexible and elegant way, based on different definitions of spatio-temporal
weight matrices while exploiting existing spatial econometric methods. The main
contribution of this paper is to propose a general way to consider time and spatial
effects in statistical modelling when data consist of individual observations recorded
over time and when individuals are seldom observed more than once. By construct-
ing weight matrices based on spatial relations as well as temporal weight matrices

based on time relations, the approach proposes a simple way to consider the multi-

!4“However, it can be noted that there is a positive relation between the number of neighbours
considered and the estimated coefficient, suggesting that such matrix can be used to calibrate
the optimal number of neighbours necessary to totally eliminate spatial autocorrelation among
residuals.

15Other estimations have been made using a kernel influence varying between 500 metres and
2,000 metres and the coefficients do not change much.
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directional effect of space and the unidirectional effect of time.

Different spatio-temporal weight matrices are built with respect to the different
versions of the spatial weight matrices and temporal weight matrices by using the
Hadamard matrix product. The specification of the spatio-temporal weight matrix
has the advantage of imposing constraints from temporal reality on the spatial el-
ements and from spatial reality on temporal elements. The approach permits the
introduction of new variables related to the dynamic effect, and simple statistical
tests, such as t statistics, can be used to evaluate the relevance of the dynamic hy-
pothesis in the price determination process. Since many software packages offer the
econometric spatial error model specification, the STAR model developed here can
be simply estimated by constructing spatial, temporal and spatio-temporal weight
matrices.

However, like any other statistical application, the model developed relies on
some implicit assumptions that could have implications for the estimations: the
choice of functional form, the stability of coefficients over time, the linearity of
the relation in parameters, the omission of possible significant variables and the
possibility of introducing selectivity bias by using only partial information, since
the houses sold may have different characteristics from the total housing stock.
More importantly, the results suggest that some of the spatial latent relation that
is captured through the coefficient related to the error lag specification is in fact a
result of a temporal effect that is, otherwise, not included in the specification of the
hedonic price model.

In our view, this approach can easily be transposed to several other applications
in economic geography and regional science when both dimensions (spatial and
temporal) are present while the data base is not of a panel or pseudo-panel type.
It should be interesting to see whether or not this approach can be used in other
applications since the STAR model developed in Section 3 is general. It is important

to address the problem of the spatial dimension and temporal dimension correctly,
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since the effect of one dimension can falsely be attributed to the other.

7 Conclusion

The paper presents a spatio-temporal autoregressive (STAR) model based on a
spatio-temporal lag model (STLM) as well as on the spatial error model (SEM) by
constructing different spatio-temporal weight matrices. The spatio-temporal weight
matrices account for the characteristics of spatial data collected over time without
being panel or pseudo-panel data. While the spatial effect is quite important in
research where the geographical dimension is known, as is the case with real es-
tate, few studies have further investigated the effect of time in price determination
(Gelfand et al., 1998). When this has been done, most of the studies suggest that
the effect is significant, but not important. This may explain why the question has
received little attention to date. However, the results obtained in this paper suggest
that this conclusion may not be generalized to all applications. The STAR model
developed permits the evaluation of the latent spatial spillover effect as well as the
time dynamic effect by constructing dynamic variables using spatial and temporal
matrices defined “a priori”.

Based on real estate data, we show how the proposed model can easily be es-
timated using the existing spatial toolbox from Matlab or other software packages
by constructing different weight matrices. Using data for apartment sales in Paris
between 1990 and 2001, the model is estimated with consideration given to space
and time. The results clearly show that the dynamic effect is an important compo-
nent of price determination that is, otherwise, falsely captured by spatial relations.
Moreover, the results show that the specification of dynamic consideration is quite
stable with respect to the structure used to calculate the new variable that is used
in the regression model.

The main contribution of the paper is to present a simple and elegant way to
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consider both dimensions (space and time) in a generating process that is differ-
ent from the usual panel or pseudo-panel approaches. Since it has been proven
that spatio-temporal specification can have several influences on the estimated la-
tent spatial spillover effect, this approach can be used in other research fields. It
would be interesting to see the performance of such specifications in other research

incorporating both dimensions: space and time dimensions.

22



References

ABRAHAM, J., AND W. SCHAUMAN (1991): “New Evidence on Home Prices from

Freddie Mac Repeat Sales,” AREUFEA Journal, 19, 333-352.

ANSELIN, L. (2007): “Spatial econometrics in RSUE: Retrospect and prospect,”

Regional Science and Urban FEconomics, 37, 450—-456.

(2010): “Thirty years of spatial econometrics,” Papers in Regional Science,

89, 3-25.

ANSELIN, L., I. SYABRI, aAND Y. KHO (2006): “GeoDa: an introduction to spatial

data analysis,” Geographical Analysis, 38, 5—22.
BALTAGI, B. H. (2003): A companion to theoretical econometrics. Wiley-Blackwell.
——— (2005): Econometric Analysis of Panel Data. Wiley, 3 edn.

CASE, K., AND R. SHILLER (1989): “The Efficiency of the Market for Single-Family

Homes,” The American Economic Review, 79, 125-137.

CHAscoO, C. Y., anp F. A. H. LOPEZ (2008): “Is spatial dependence an instanta-

neous effect? Some evidence in economic series of Spanish provinces,” Fstadistica

FEspanola, 50(167), 101-118.

Crapp, J., C. GIACOTTO, AND D. TIRTIROGLU (1991): “Housing Price Indices
Based on All Transactions Compared to Repeat Subsamples,” AREUFEA Journal,
19, 270-285.

Crirr, A., axp J. K. ORD (1969): “The problem of Spatial Autocorrelation,” in

London Papers in Regional Science, ed. by A. Scott, pp. 25-55. London: Pion.

COLEMAN, J., E. CAMPBELL, C. HOBSON, J. MCPARTLAND, A. MooOD, F. WE-
INFELD, AND R. YORK (1966): “Equality of Education opportunity,” Discussion

paper, Washington, D.C.: U.S. Government Printing Office.

23



DEATON, A. (1985): “Panel Data from Time Series of Cross-Sections.,” Journal of

Econometrics, 30(1-2), 109 — 126.

DEs RosIERs, F., J. DUBE, anpD M. THERIAULT (2011): “Do peer effects shape

property values?)” Journal of Property Investment €& Finance, 29(4/5), 510 — 528.

DUBE, J., F. DES ROSIERS, aND M. THERIAULT (2011a): “Impact de la seg-
mentation spatiale sur le choix de la forme fonctionnelle pour la modélisation

hédonique,” Revue d’Economie Régionale et Urbaine, forthcoming.

DUBE, J., F. DEs ROSIERS, M. THERIAULT, AND P. DiB (2011b): “Economic Im-
pact of a Supply Change in Mass Transit in Urban Areas: A Canadian Example,”

Transportation Research, 45, 46-62, forthcoming.

DUBE, J., AND D. LEGROS (2011): “A spatio-temporal measure of spatial depen-
dence: an example using real estate data,” Papers in Regional Science, forthcom-

ing.

ELHORST, J. P. (2003): “Specification and Estimation of Spatial Panel Data Mod-

els.,” International Regional Science Review, 26(3), 244 — 268.

FINGLETON, B. (1999): “Spurious spatial regression: some Monte Carlo results
with spatial unit roots and spatial cointegration,” Journal of Regional Science,

39, 1-19.

FINGLETON, B. (2009): “Spatial Autoregression,” Geographical Analysis, 41, 385~
391.

GELFLAND, A., S. GHOSH, J. KNIGHT, AND C. SIRMANS (1998): “Spatio-Temporal
Modeling of Residential Sales Data,” Journal of Business and Economics Statis-

tics, 16(3), 312-321

GETIS, A. (2009): “Spatial weights matrices,” Geographical Analysis, 41, 404-410.

24



GETIS, A., AND J. ALDSTADT (2004): “Constructing the spatial weights matrix

using a local statistic,” Geographical Analysis, 36, 90-104.

GRIFFITH, D. A. (1981): “Modelling Urban Population Density in a Multi-Centered
City.,” Journal of Urban Economics, 9(3), 298 — 310.

——— (1996): Some guidelines for specifying the geographic weights matriz con-
tained in spatial statistical modelschap. Pratical Handbook of Spatial Statistics,

pp. 82-148. Boca Raton, FL: CRC Press.

——— (2005): “Effective Geographic Sample Size in the Presence of Spatial Au-

tocorrelation,” Annals of the Association of American Geographers, 95, 740-60.

HECKMAN, J. J., AND J. ROBB, RICHARD (1985): “Alternative Methods for Eval-

uating the Impact of Interventions: An Overview.,” Journal of Econometrics,

30(1-2), 239 — 267.

Hsiao, C. (2003): Analysis of panel data, Econometric Society monographs. Cam-

bridge University Press, Cambridge, 2nd edn.

LEE, L. F., AND J. YU (2009): “Spatial Nonstationarity and Spurious Regression:
The Case with Row-Normalized Spatial Weights Matrix,” Spatial Economic Anal-

ysis, 4, forthcoming.

LEE, L.-F., AND J. YU (2010): “Some recent developments in spatial panel data

models,” Regional Science and Urban Economics, 40(5), 255-271.

LESAGE, J., anp K. R. PACE (2009): Introduction to spatial econometrics. Chap-

man and Hall/CRC.

MANskI, C. (1993): “Identification of Endogcenous Social Effects: the Reflection

Problem,” The Review of Economic Studies, 60, 531-542.

25



MoOFFITT, R. (1993): “Identification and Estimation of Dynamic Models with a
Time Series of Repeated Cross-Sections.,” Journal of Econometrics, 59(1-2), 99 —

123.

MONTEIRO, J.-A., aAND M. KUKENOVA (2009): “Spatial Dynamic Panel Model
and System GMM: A Monte Carlo Investigation,” IRENE Working Papers 09-01,

IRENE Institute of Economic Research.

PAcE, K. R., R. BARRY, J. M. CLAPP, AND M. RODRIGUEZ (1998): “Spatiotem-

poral autoregressive models of neighborhood effects,” Journal of Real Estate Fi-

nance and Economics, 17(1), 15-33.

PACE, KELLEY, R., R. BARRY, W. O. GILLEY, anDp C. F. SIRMANS (2000): “A
method for spatial-temporal forecasting with an application to real estate prices,”

International Journal of Forecasting, 16, 2296246.

ROSEN, S. (1974): “Hedonic Prices and Implicit Markets: Product Differentiation

in Pure Competition,” Journal of Political Economy, 82(1), 34-55.

SMiTH, T. E., axnpD P. WU (2009): “A spatio-temporal model of housing prices
based on individual sales transactions over time,” Journal of Geographical, 11(4),

333-355.

SUN, H., anD Y. TU (2005): “A spatio-temporal autoregressive model for multi-unit

residential market analyis,” The Journal of Real Estate Finance and Economics,

31(2), 155-187.

TOBLER, W. R. (1979): Philosophy in geographychap. Cellular geography, pp. 379
386. Reidel Pub., Dordrecht, Holland.

Tu, Y., S.-M. Yu, anp H. SUN (2004): “Transaction-Based Office Price Indexes:

A Spatiotemporal Modeling Approach.,” Real Estate Economics, 32(2), 297 — 328.

26



Yu, J., R. DE JONG, anD L.-F. LEE (2008): “Quasi-maximum likelihood estimators
for spatial dynamic panel data with fixed effects when both n and T are large,”

Journal of Econometrics, 146(1), 118-134.

Yu, J., anp L.-F. LEE (2010): “Estimation Of Unit Root Spatial Dynamic Panel

Data Models,” Econometric Theory, 26(05), 1332-1362.

27



Table 1: Description of variables

Variables Description
Price Transaction price
in € (before tax)
Area Floor space (m?)
Lift Dummy: yes = 1, no = 0

Number of bathrooms
Terrace

Garage

Collective heating

Built before 1850

Built between 1850-1913
Built between 1914-1947
Built between 1948-1969
Built between 1970-1980
Built between 1981-1991
Built after 1991

Departments

Number of bathrooms

Dummy:
Dummy:
Dummy:
Dummy:
Dummy:
Dummy:
Dummy:
Dummy:
Dummy:
Dummy:

Dummy:

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

if apartment

=1,no=0
=1,n0=20
=1,n0=20
=1,n0=20
=1,no=0
=1,no=0
=1,n0=20
=1,n0=20
=1,n0=20
=1,no=0
=1

sold in department i, no = 0

Paris Dummy: yes = 1, no = 0
Hauts de Seine Dummy: yes = 1, no = 0
Seine Saint Denis Dummy: yes = 1, no = 0
Val de Marne Dummy: yes = 1, no = 0
Sold in year ¢ Dummy: yes = 1

if apartment sold in year ¢, no = 0

Table 2: Summary - Descriptive statistics for all observations

Variables Mean Std Min. Q1 Q2 Q3 Max.
Price in € 148,399.89  117,723.00 1,638.00 76,230.00 114,345.00 182,910.00  3,060,167.00
Area 61.85 28.99 10.00 42.00 56.00 75.00 699.00
Price by department

Paris 168,840.23  135,749.11  3,060.00  83,840.00 129,600.00  205,840.00  3,060,167.00
Hauts de Seine 156,832.68  103,405.74  5,936.00 91,440.00 129,858.00  194,400.00  1,837,125.00
Seine Saint Denis 76,288.49 36,303.60  1,638.00 52,836.00  70,140.00 93,000.00 487,800.00
Val de Marne 108,471.79  62,541.93  4,554.00 70,136.00  93,013.00  128,069.00  1,021,410.00

Std: standard deviation, Min.: minimum, Q1: first quartile, Q2: median, Qs: third quartile, Max.: maximum.

Observations: 127,787
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Table 3: Summary - Descriptive statistics for all observations

Variables Number of transactions  Percentage of transactions
Departments

Paris 67,111 52.72
Hauts de Seine 29,559 23.22
Seine Saint Denis 12,384 9.73
Val de Marne 18,233 14.32
Year

1990 5,396 4.24
1991 5,744 4.51
1992 8,177 6.42
1993 9,176 7.21
1994 11,139 8.75
1995 9,283 7.29
1996 12,898 10.13
1997 12,674 9.96
1998 13,284 10.44
1999 16,358 12.85
2000 13,540 10.64
2001 9,618 7.56

Observations: 127,787

Table 4: Summary - Descriptive statistics of sample I (10,000 observations)

Variables Mean Std Min. Q1 Q2 Q3 Max.
Price in € 148,541.59  117,487.95 3,060.00 76,230.00 11,4351.50 182,913.00 1,524,600.00
Living area 62.10 29.07 13.00 42.00 56.00 75.00 456.00

Price by department in €

Paris 168,800.96  136,740.72  3,060.00  83,839.00 129,584.00  205,813.00  1,524,600.00
Hauts de Seine 15,5076.41  97,111.42  15,249.00 91,468.00  129,600.00 194,348.00  1,006,080.00
Seine Saint Denis 76,207.91  36,668.25  13,710.00 51,815.00  70,144.00  95,288.00  2,63,100.00
Val de Marne 109,071.03  65,312.00  13,268.00 70,128.00  95,985.00  129,404.00  1,021,410.00

Std: standard deviation, Min.: minimum, @Q1: first quartile, QQ2: median, @3: third quartile, Max.: maximum.

Observations: 10,000
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Table 5: Summary - Descriptive statistics of sample IT (10,000 observations)

Variables Mean Std Min. Q1 Q2 Q3 Max.
Price in € 147,659.03  116,223.96  7,613.00  76,224.00 114,342.00  180,664.00 1,798,797.00
Living area 61.450 28.36 12.00 42.00 56.00 74.00 429.00

Price by department in €

Paris 167,348.82  131,619.47 7613.00 83,844.50  129,603.50  205,794.00  1,798,797.00
Hauts de Seine 157,471.62  106,465.87  13,716.00  89,930.00 129,562.50  194,350.00  1,036,574.00
Seine Saint Denis 75,965.71 37,467.80 7,632.00 51,454.50 70,143.00 91,492.00 320,150.00
Val de Marne 106,802.55 63,946.29 10,656.00  68,600.00  93,015.50 126,400.00 731,717.00

Std: standard deviation, Min.: minimum, @Q1: first quartile, QQ2: median, @3: third quartile, Max.: maximum.

Observations: 10,000

Table 6: Summary - Descriptive statistics of sample IIT (10,000 observations)

Variables Mean Std Min. Q1 Q2 Q3 Max.
Price in € 149,964.53  119,569.19 9,144.00 76,240.00 114350.00 182952.00 1,392,000.00
Living area 62.07 29.50 15.00 42.00 56.00 75.00 340.00

Price by department in €

Paris 169,653.81  136,507.16  9,300.00  83,860.00 129,583.00  205,840.00  1,392,000.00
Hauts de Seine 159,710.71  107,884.58  9,144.00  91,450.00 132,600.00 198,208.00  1,295,680.00
Seine Saint Denis 76,765.61  36,620.01  10,660.00 53,352.00  71,446.00  93,300.00  304,980.00
Val de Marne 108,601.62  63,980.83  9,150.00  71,665.00  91,480.00  125,001.00  716,600.00

Std: standard deviation, Min.: minimum, Q1: first quartile, Q2: median, Qs: third quartile, Max.: maximum.

Observations: 10,000
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Figure 1: Spatial dispersion of sales in the Greater urban area of Paris - Sample 1.
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Table 7: Estimation results for sub-sample I (“Wy = Sy for SEM”)

OLS model STLM model STAR model SEM model
Variable Coeflicients  t value  Coefficients t value  Coefficients t value Coefficients t value
Yt—1 - - 0.2246 37.54 0.1521 56.73 - -
Yt—2 - - 0.0098 8.13 0.0065 5.50 - -
Constant 6.6012 155.81 4.3099 59.60 5.1098 295.99 6.7371 677.22
Log living area (m2) 1.1265 129.47 1.0646 129.21 1.0542 133.41 1.0744 142.36
Lift 0.1262 15.28 0.0877 11.34 0.0747 10.20 0.0883 11.83
Log Number of bathrooms 0.2677 15.32 0.2453 15.11 0.2285 15.00 0.2341 15.09
Terrace 0.0939 5.57 0.0935 5.98 0.0953 6.46 0.0944 6.26
Garage 0.0348 4.14 0.0389 4.99 0.0501 6.78 0.0511 6.76
Collective heating 0.0404 2.89 0.0414 3.19 0.0289 2.36 0.0240 1.93
Built before 1850 ref. ref. ref. ref. ref. ref. ref. ref.
Built between 1850-1913 -0.0857 -4.94 -0.0676 -4.19 -0.0449 -2.96 -0.0497 -3.79
Built between 1914-1947 -0.1121 -6.09 -0.0838 -4.90 -0.0545 -3.36 -0.0636 -4.52
Built between 1948-1969 -0.1685 -9.20 -0.1360 -7.99 -0.0869 -5.35 -0.0911 -6.37
Built between 1970-1980 -0.1842 -9.63 -0.1383 -7.76 -0.0733 -4.31 -0.0755 -4.90
Built between 1981-1991 -0.0370 -1.66 -0.0120 -0.58 0.0541 2.72 0.0626 3.37
Built between 1992-2000 0.1626 7.53 0.1686 8.40 0.2393 12.40 0.2599 14.64
Ground ref. ref. ref. ref. ref. ref. ref. ref.
Floor 1 0.0545 3.89 0.0604 4.64 0.0573 4.75 0.0541 4.65
Floor 2 0.0802 5.70 0.0830 6.35 0.0812 6.71 0.0795 6.83
Floor 3 0.0907 6.38 0.0914 6.92 0.0894 7.29 0.0882 7.44
Floor 4 0.0858 5.87 0.0923 6.80 0.0906 7.18 0.0868 7.06
Floor 5 and more 0.0574 4.18 0.0683 5.35 0.0690 5.81 0.0640 5.57
Seine Saint Denis ref. ref. ref. ref. ref. ref. ref. ref.
Paris 0.6853 57.47 0.5162 43.03 0.5829 36.34 0.6875 50.04
Hauts de Seine 0.4720 38.07 0.3243 26.64 0.3896 23.23 0.4902 32.11
Val de Marne 0.2481 18.67 0.1782 14.24 0.2061 11.64 0.2506 14.62
Sold in 1990 ref. ref. ref. ref. ref. ref. ref. ref.
Sold in 1991 0.0365 1.71 -0.0411 -1.92 -0.0198 -1.00 0.0287 1.66
Sold in 1992 -0.0430 -2.15 -0.1107 -5.40 -0.0890 -4.73 -0.0417 -2.67
Sold in 1993 -0.1130 -5.79 -0.1900 -9.39 -0.1687 -9.05 -0.1205 -7.88
Sold in 1994 -0.1180 -6.26 -0.1938 -9.79 -0.1675 -9.20 -0.1189 -8.16
Sold in 1995 -0.1679 -8.58 -0.2379 -11.66 -0.2159 -11.52 -0.1689 -11.05
Sold in 1996 -0.2599 -14.10 -0.3362 -17.32 -0.3102 -17.32 -0.2585 -18.18
Sold in 1997 -0.2727 -14.62 -0.3502 -17.86 -0.3193 -17.56 -0.2650 -18.23
Sold in 1998 -0.2668 -14.45 -0.3464 -17.72 -0.3129 -17.27 -0.2560 -17.83
Sold in 1999 -0.2002 -11.16 -0.2841 -14.83 -0.2533 -14.24 -0.1961 -14.14
Sold in 2000 -0.1467 -7.92 -0.2211 -11.23 -0.1864 -10.18 -0.1327 -9.16
Sold in 2001 -0.0951 -4.83 -0.1710 -8.27 -0.1281 -6.64 -0.0704 -4.57
Lambda - - - - 0.6290 54.59 0.7260 63.52
R? 0.7717 - 0.8031 - 0.8220 - 0.8130 -
R 0.7710 - 0.8025 - 0.8214 - 0.8124 -
Moran’s I 0.1911 67.74 0.1036 36.79 - - - -
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Table 8: Estimation results for sub-sample IT (“WW, = Sy for SEM”)

OLS model STLM model STAR model SEM model
Variable Coeflicients  t value  Coefficients t value Coefficients t value Coefficients t value
Yt—1 - - 0.2104 37.11 0.1439 56.32 - -
Yt—2 - - 0.0113 9.73 0.0079 6.82 - -
Constant 6.6612 155.71 4.5214 65.06 5.2390 310.87 6.7650 662.97
Log living area (m2) 1.1206 126.51 1.0584 126.33 1.0524 131.47 1.0765 140.96
Lift 0.1285 15.39 0.0871 11.14 0.0706 9.57 0.0845 11.19
Log Number of bathrooms 0.2418 13.87 0.2386 14.75 0.2193 14.52 0.2153 13.93
Terrace 0.1402 8.36 0.1413 9.09 0.1432 9.82 0.1409 9.43
Garage 0.0277 3.32 0.0324 4.19 0.0432 5.92 0.0432 5.78
Collective heating 0.0035 0.25 0.0088 0.67 -0.0032 -0.26 -0.0068 -0.54
Built before 1850 ref. ref. ref. ref. ref. ref. ref. ref.
Built between 1850-1913 -0.1394 -7.58 -0.1203 -7.05 -0.1025 -6.43 -0.1088 -8.16
Built between 1914-1947 -0.1551 -8.06 -0.1297 -7.26 -0.1043 -6.18 -0.1129 -7.95
Built between 1948-1969 -0.2123 -11.11 -0.1787 -10.07 -0.1356 -8.07 -0.1410 -9.79
Built between 1970-1980 -0.2221 -11.08 -0.1796 -9.65 -0.1168 -6.60 -0.1178 -7.55
Built between 1981-1991 -0.0876 -3.81 -0.0563 -2.64 0.0043 0.21 0.0091 0.49
Built between 1992-2000 0.1344 6.01 0.1328 6.41 0.2097 10.56 0.2351 13.12
Ground ref. ref. ref. ref. ref. ref. ref. ref.
Floor 1 0.0678 4.81 0.0721 5.52 0.0753 6.23 0.0751 6.43
Floor 2 0.0881 6.30 0.0923 7.12 0.0967 8.10 0.0954 8.29
Floor 3 0.1073 7.54 0.1116 8.46 0.1146 9.42 0.1123 9.55
Floor 4 0.1109 7.47 0.1215 8.82 0.1165 9.15 0.1091 8.77
Floor 5 and more 0.0724 5.30 0.0812 6.41 0.0903 7.67 0.0888 7.79
Seine Saint Denis ref. ref. ref. ref. ref. ref. ref. ref.
Paris 0.6921 58.85 0.5260 44.78 0.5946 39.33 0.6965 52.34
Hauts de Seine 0.4821 39.41 0.3351 28.02 0.4041 25.23 0.5044 33.92
Val de Marne 0.2381 18.13 0.1764 14.33 0.1847 10.84 0.2185 13.07
Sold in 1990 ref. ref. ref. ref. ref. ref. ref. ref.
Sold in 1991 0.0114 0.55 -0.0682 -3.24 -0.0440 -2.25 0.0144 0.85
Sold in 1992 -0.0335 -1.73 -0.1142 -5.76 -0.0947 -5.20 -0.0370 -2.43
Sold in 1993 -0.0914 -4.77 -0.1809 -9.11 -0.1624 -8.84 -0.0976 -6.43
Sold in 1994 -0.1183 -6.42 -0.2052 -10.63 -0.1828 -10.23 -0.1174 -8.15
Sold in 1995 -0.1774 -9.38 -0.2672 -13.52 -0.2462 -13.42 -0.1832 -12.24
Sold in 1996 -0.2471 -13.58 -0.3295 -17.23 -0.3052 -17.23 -0.2434 -17.09
Sold in 1997 -0.2672 -14.63 -0.3521 -18.37 -0.3202 -17.92 -0.2534 -17.62
Sold in 1998 -0.2572 -14.25 -0.3439 -17.94 -0.3134 -17.53 -0.2461 -17.36
Sold in 1999 -0.2060 -11.69 -0.2968 -15.81 -0.2660 -15.14 -0.1958 -14.19
Sold in 2000 -0.1282 -7.10 -0.2209 -11.50 -0.1857 -10.30 -0.1131 -7.95
Sold in 2001 -0.0706 -3.71 -0.1548 -7.72 -0.1205 -6.41 -0.0532 -3.51
Lambda - - - - 0.6360 55.25 0.7330 63.95
R? 0.7727 - 0.8045 - 0.8249 - 0.8152 -
® 0.772 - 0.8039 - 0.8244 - 0.8146 -
Moran’s T 0.1911 69.96 0.1136 40.35 - - - -
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Table 9: Estimation results for sub-sample IIT (“W, = Sy for SEM”)

OLS model STLM model STAR model SEM model
Variable Coeflicients  t value  Coefficients t value Coefficients t value Coefficients t value
Yt—1 - - 0.2719 42.90 0.1967 56.98 - -
Yt—2 - - 0.0120 10.78 0.0085 7.62 - -
Constant 6.6114 160.47 3.8496 51.98 4.6417 158.82 6.7157 988.84
Log living area (m?) 1.1399 133.16 1.0568 131.84 1.0579 138.30 1.0923 145.54
Lift 0.1166 14.47 0.0726 9.83 0.0624 8.85 0.0770 10.61
Log Number of bathrooms 0.2647 15.46 0.2453 15.74 0.2331 15.81 0.2363 15.55
Terrace 0.1025 6.27 0.1049 7.05 0.1092 7.73 0.1106 7.59
Garage 0.0266 3.26 0.0306 4.12 0.0421 5.92 0.0449 6.13
Collective heating 0.0215 1.63 0.0209 1.74 0.0053 0.47 -0.0005 -0.05
Built before 1850 ref. ref. ref. ref. ref. ref. ref. ref.
Built between 1850-1913 -0.1417 -8.13 -0.1102 -6.95 -0.0920 -6.21 -0.1036 -8.10
Built between 1914-1947 -0.1484 -8.12 -0.1176 -7.07 -0.0908 -5.80 -0.0983 -7.32
Built between 1948-1969 -0.2050 -11.30 -0.1536 -9.29 -0.1139 -7.29 -0.1258 -9.12
Built between 1970-1980 -0.2181 -11.55 -0.1621 -9.42 -0.1067 -6.50 -0.1082 -7.25
Built between 1981-1991 -0.0820 -3.74 -0.0369 -1.85 0.0178 0.94 0.0195 1.09
Built between 1992-2000 0.1352 6.39 0.1439 7.48 0.2089 11.26 0.2371 13.83
Ground ref. ref. ref. ref. ref. ref. ref. ref.
Floor 1 0.0692 5.05 0.0704 5.65 0.0606 5.23 0.0591 5.25
Floor 2 0.0880 6.45 0.0939 7.57 0.0905 7.83 0.0863 7.62
Floor 3 0.0820 5.97 0.0907 7.25 0.0871 7.48 0.0831 7.27
Floor 4 0.0904 6.40 0.0985 7.66 0.0934 7.77 0.0899 7.59
Floor 5 and more 0.0534 4.02 0.0685 5.66 0.0698 6.16 0.0649 5.84
Seine Saint Denis ref. ref. ref. ref. ref. ref. ref. ref.
Paris 0.6900 60.60 0.4802 42.07 0.5593 37.90 0.6989 53.67
Hauts de Seine 0.4695 39.70 0.2800 24.19 0.3505 22.68 0.4890 33.90
Val de Marne 0.2447 19.06 0.1533 12.92 0.1849 11.28 0.2458 15.09
Sold in 1990 ref. ref. ref. ref. ref. ref. ref. ref.
Sold in 1991 0.0109 0.52 -0.0626 -3.06 -0.0418 -2.19 0.0180 1.07
Sold in 1992 -0.0567 -2.92 -0.1242 -6.44 -0.0993 -5.58 -0.0400 -2.69
Sold in 1993 -0.1170 -6.00 -0.2017 -10.29 -0.1785 -9.82 -0.1139 -7.60
Sold in 1994 -0.1340 -7.12 -0.2125 -11.20 -0.1931 -10.97 -0.1311 -9.12
Sold in 1995 -0.1973 -10.15 -0.2765 -14.07 -0.2505 -13.70 -0.1861 -12.39
Sold in 1996 -0.2491 -13.55 -0.3363 -17.92 -0.3133 -17.98 -0.2460 -17.63
Sold in 1997 -0.2865 -15.32 -0.3738 -19.68 -0.3485 -19.62 -0.2769 -19.33
Sold in 1998 -0.2899 -15.91 -0.3739 -20.09 -0.3436 -19.71 -0.2724 -19.55
Sold in 1999 -0.2288 -12.76 -0.3104 -16.92 -0.2831 -16.47 -0.2132 -15.62
Sold in 2000 -0.1362 -7.45 -0.2295 -12.23 -0.1978 -11.19 -0.1211 -8.72
Sold in 2001 -0.0685 -3.51 -0.1500 -7.58 -0.1132 -6.09 -0.0403 -2.71
lambda - - - - 0.6070 45.16 0.7380 64.22
R? 0.7881 - 0.8248 - 0.8396 - 0.8279 -
® 0.7874 - 0.8242 - 0.8391 - 0.8274 -
Moran’s I 0.1949 70.90 0.0926 32.78 - - - -
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